
COL 12(5), 053501(2014) CHINESE OPTICS LETTERS May 10, 2014

A differential evolution approach for parameter extraction

of solar cell from current-voltage characteristics

Meiying Ye (���{{{JJJ)1∗ and Xiaodong Wang (���¡¡¡ÀÀÀ)2

1Department of Physics, Zhejiang Normal University, Jinhua 321004, China
2Department of Electronic Engineering, Zhejiang Normal University, Jinhua 321004, China

∗Corresponding author: ymy@zjnu.cn

Received November 14, 2013; accepted March 27, 2014; posted online April 30, 2014

This letter presents an approach based on differential evolution (DE) algorithm for determining the solar
cell model parameters from current-voltage (I − V ) characteristics. The validity of this approach has
been confirmed with experimental and simulated I − V data. It was demonstrated that the I − V curve
derived from the parameters extracted by the DE approach is in good agreement with the experimental or
simulated I−V data. A low objective function value as well as a high parameter precision can be obtained
by the DE algorithm.
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The high growth rate of photovoltaic energy systems has
led to an increase in research projects on various aspects
of photovoltaic systems, from the development of novel
solar cells to the performance analysis, sizing, perfor-
mance estimation and optimization of photovoltaic en-
ergy systems[1−3]. One of these issues, the modeling of
solar cells is an essential topic of research. The use of
equivalent circuit models is a convenient and widely used
method for simulating solar cell performance. In order to
achieve an equivalent circuit model of a power source, we
need generally to extract the model parameters by means
of some techniques according to the measured data.

The single diode equivalent circuit model of illuminated
solar cells may be expressed as

I =Iph−ISD{exp[q(V+IRs)/nkBT ]−1}−(V+IRs)/Rsh, (1)

where Rs, Rsh, Iph, ISD, n, kB, q, and T are the series
resistances, the shunt resistances, the cell-generated pho-
tocurrent, the diode saturation current, the diode ideal-
ity factor, the Boltzmann constant, the electronic charge,
and the temperature in Kelvin, respectively. The knowl-
edge of the parameters of solar cells is necessary for cell
array simulation and process optimization[4]. Over the
years, many methods have been proposed to extract the
solar cell model parameters. Among these methods, the
direct approaches are based on the use of the I−V curve
features, such as the axis intercepts and the gradients
at selected points, to determine some cell parameters.
The accuracy of these techniques is limited by the mea-
sured I − V data, whose errors are introduced by the
numerical differentiation or the simplified formulas used
in parameter extraction. Over the past decades, several
different traditional nonlinear optimization algorithms,
such as the quasi-Newton method and its variations, have
been proposed to solve solar cell parameters extraction
problem. The drawback of traditional optimization tech-
niques is mostly that they need prior knowledge of the
parameters of interest, i.e. initial guesses[5,6]. In re-
cent years, the methods based on intelligent optimization

algorithms have attracted much attention. For exam-
ple, the simulated annealing (SA)[7], genetic algorithm
(GA)[8−11] and particle swarm optimization (PSO)[12]

were proposed so as to improve the accuracy of the ex-
tracted parameters. Among intelligent optimization al-
gorithms, the GA is one of the most popular algorithms
in applied physics[13−25]. However, GA has two draw-
backs: premature convergence and lack of good local
search ability[26,27]. In order to overcome the disadvan-
tages of GA, differential evolution (DE) algorithm has
been proposed[28] as an alternative to GA for solving op-
timization problems. The DE’s advantages are easy to
implement, require a few control parameters tuning and
exhibit fast convergence. Also, the DE can cope very well
with local optima, which is a known weakness of tradi-
tional nonlinear optimization algorithms. DE has con-
sistently ranked as one of the best search algorithm[29].
In this letter we explore an additional possibility; the pa-
rameter extraction of a solar cell equivalent circuit model
is carried out with the help of the DE algorithm.

Consider the solar cell model described by the Eq. (1)
as well as following the approach recently proposed in
Ref. [8], the objective function can be given by
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IDk
= ISD{exp[q(Vk + IkRs)/(nkBT )] − 1},

Ishk
= (Vk + IkRs)/Rsh,

where Rs, Rsh, Iph, ISD, and n are the model parameters
as defined before, which are unknown for real cases, to be
determined as accurately as possible; Ik and Vk denote
an experimental data pair at the kth point of an I − V
curve; N is the number of the experimental data pairs.
In this case, the Eq. (2) implies the current error of the
equivalent circuit model.

It is well known that Eq. (1) is an implicit transcen-
dental equation and may not be solved explicitly in gen-
eral for current and voltage using common elementary
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functions. With the help of the objective function de-
scribed by Eq. (2), the optimization procedure has the
advantage of no requirement of solving numerically the
implicit equation.

Obviously, the Eq. (2) is nonlinear. This means that
the objective function is not quadratic, possessing a sin-
gle global minimum. For traditional optimization algo-
rithms, this will result in local minima, which in turn
might attract the solution into one of them depending
on the starting position. Although the GA is effective
at finding relatively good neighborhoods of solution in
a complex search space, they may have premature con-
vergence towards a local minimum. The population in a
GA reaches a state such that the genetic operators can no
longer produce offsprings that outperform their parents.
In this case, the algorithm will lose its capability of find-
ing better solutions in the multi-modal error surface of
objective function due to the existence of numerous local
optima. Therefore, in this work we try applying the DE
algorithm to the extraction of solar cell equivalent circuit
model parameters.

For the DE algorithm, in the initialization phase, a
population of NP trial solutions is randomly gener-
ated. In the iteration process, the ith individual of the
population at the jth iteration is indicated by θj(i) =
(Rs, Rsh, Iph, ISD, n), i = 1, 2, · · · , NP . The population
evolves iteratively by means of some reproduction rules
reported in details in Ref. [30]. These rules are governed
by some control parameters, i.e., a scaling factor F and
a crossover constant CR, which control the amplification
of the differential variation and the diversity of the popu-
lation, respectively. CR and F should be chosen in order
to avoid a premature convergence to local minima or a
slow convergence rate. Some criterions for the choice of
these parameters, together with a discussion about the
main features of the DE, can be found in Ref. [30]. Fi-
nally, the iterative algorithm stops if a maximum number
of iterations, jmax, is reached.

In basic DE, the mutant vector Vi = [vi1, vi2, · · · , vid]
for the ith parent Xi is generated, by combining three
random and distinct population members Xr1, Xr2, and
Xr3, as follows:

Vi(j + 1) = Xr1(j) + F · [Xr2(j) − Xr3(j)], (3)

Following the mutation operation, the crossover oper-
ator is applied to increase the diversity of the popula-
tion. Thus, for each target individual Xi, a trial vec-
tor Ui = [ui1, ui2, · · · , uid] is generated by the following

equation:

uik(j+1)=

{

vik(j+1), if rand(k)6CR or k = randn(i),
xik(j), otherwise,

k = 1, 2, · · · , d, (4)

where rand(k) is the kth independent random number
uniformly distributed in the range of [0, 1]. randn(i) is a
randomly chosen index from the set {1, 2, · · · , d}.

Therefore, there are significant differences between the
DE and GA in the follows:

(1) In GA, two parents are selected for crossover and
the child is a recombination of the parents. In DE, three
parents are selected for crossover and the child is a per-
turbation of one of them.

(2) The new child in DE replaces a randomly selected
vector from the population only if it is better than it. In
conventional GA, children replace the parents with some
probability regardless of their fitness.

To illustrate the proposed approach, we used experi-
mental and simulated I − V data as evaluation of the
extracting power of the DE. We considered the number
of maximal iteration jmax = 2000, the population size
NP= 50, the scaling factor F = 0.5, and the crossover
constant CR= 0.6. For the sake of comparison, we also
implemented the parameter extraction of a solar cell
model using the GA. In this case, we used real-value GA
algorithm with the function ‘ga’ available in the Genetic
Method and Direct Search Toolbox of the MATLAB soft-
ware, running with the same objective function, maximal
iteration index, population size and search range as the
DE approach. The following real-value GA controlling
parameters have been used: the crossover rate was 0.8,
the mutation rate 0.2, and the elite strategy was used,
where the best individual in each iteration was copied
into the succeeding iteration in order to speed conver-
gence. Both approaches run with the same objective
function, maximal iteration index, population size and
search ranges.

The experimental data from a commercial solar cell
were first used to extract the parameters of model with
an operating temperature of 328 K. The results of param-
eter extraction by using DE and GA with experimental
data are summarized in Table 1. In the case of GA,
the best value in all objective function values obtained is
listed over 10 runs. Examination of Table 1, it is clear
that the objective function value obtained by DE is lower
than that obtained by GA. The result obtained by DE is
reasonable to the solar cell model and outperforms that
obtained by GA. The initial ranges of all parameters are
listed in the second column of Table 1. We can observe

Table 1. Parameter Extraction Results of Solar Cell Model by Using DE and GA with Experimental Data

Search Range
Extracted Parameter

DE GA

Rs(Ω) [0, 5×10−2] 2.3316×10−2 2.3680×10−2

Rsh(Ω) [10, 500] 104.27 78.133

Iph(A) [1.5, 1.6] 1.5401 1.5402

ISD(A) [1×10−10, 1×10−4] 5.6773×10−5 5.1361×10−5

n [1, 5] 1.6940 1.6792

ε — 1.26×10−4 3.97×10−4
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Table 2. Parameter Extraction Results of Solar Cell Model by Using DE and GA with Simulated Data

Search Range True Parameter
Extracted Parameter

DE GA

Rs(Ω) [0, 5×10−2] 2.3316×10−2 2.3316×10−2 2.3429×10−2

Rsh(Ω) [10, 500] 104.27 104.27 102.69

Iph(A) [1.5, 1.6] 1.5401 1.5401 1.5402

ISD(A) [1×10−10, 1×10−4] 5.6773×10−5 5.6773×10−5 5.5555×10−5

n [1, 5] 1.6940 1.6940 1.6907

ε — — 3.57×10−16 1.67×10−4

Fig. 1. Evolving processes of the objective function values of
the DE and GA methods with experimental data.

Fig. 2. Experimental data and the curve processed by DE
with experimental data.

that the DE does not particularly necessitate initial
guesses as close as possible to the solutions for the pa-
rameters of a solar cell model to be extracted. Required
only is a very broad range specified for each of the pa-
rameters. Figure 1 shows the evolving processes of two
methods with experimental data. Obviously, in this case
the DE approach has a lower objective function values
than the GA approach, since the local search ability of
DE is better than that of GA. In order to attest the qual-
ity of the parameter extraction, the obtained parameter
values can be fed back to solar cell model to achieve I−V
curve as soon as the optimal operation of DE is finished.
Figure 2 shows a comparison between the experimental
I − V data of the solar cell and the curve processed by
the DE approach. From Fig. 2, the experimental data
and the curve show very close agreement, which means
the proposed parameter extraction approach is feasible.

Note that there is no way to know the true values of

the extracted parameters due to using the experimental
data. Therefore, in order to validate the accuracy of the
extracted parameters, the parameter values obtained by
DE approach with experimental data were used as true
values and fed back to solar cell model to produce a set
of simulated data. With these simulated data, a new
set of parameter values was obtained by DE and GA ap-
proaches and listed in Table 2. As shown in the table, the
proposed approach yields the same parameter values as
the true values when we only take five significant figures.
Note that in this case the objective function achieved by
DE is very small, but cannot be zero due to the accumu-
lation of errors in the numerical calculations. Compared
with GA, DE has much more precision for the parameter
extraction of solar cell model. The evolving processes
of two methods with simulated data are illustrated in
Fig. 3. GA still is difficult in converging to the global
optimal solution due to premature phenomenon. This
drawback of GA can lead to poor performance regarding
the accuracy of the extracted parameters. It is clear that
the DE has much lower objective function value than
the GA when the maximum iteration number is reached,
so the DE can generate higher quality solutions than
GA. Figure 4 shows a comparison between the simulated
I − V data and the curve derived from the parameters
extracted by the DE approach. The comparison results
indicate that the curve is in good agreement with the
simulated data throughout the voltage range used.

In conclusion, the test results with experimental and
simulated I−V data indicate that a satisfying extraction
performance can be achieved by the DE approach. The
DE outperforms the GA with whether experimental data
or simulated data. Also, the proposed method does not

Fig. 3. Evolving processes of the objective function values of
the DE and GA methods with simulated data.
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Fig. 4. Simulated data and the curve processed by DE with
simulated data.

particularly necessitate initial guesses as close as possi-
ble to the solutions, which is different from traditional
optimization approaches.

The work was supported by the National Natural Sci-
ence Foundation of China under Grant No. 51305407.
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